
HYDROGEN CHLORIDE

1. PERFORMANCE

1) Measuring range : 4-40 ppm 2-20 ppm 0.4-4 ppm Number of pump strokes $1/2(50 \text{m}\ell)$ $1(100 \text{m}\ell)$ $5(500 \text{m}\ell)$

2) Sampling time ∴ 1 minute/1 pump stroke 3) Detectable limit ∴ 0.2 ppm (500mℓ) 4) Shelf life ∴ 3 years

5) Operating temperature : $0 \sim 40 \,^{\circ}\text{C}$

6) Reading : Direct reading from the scale calibrated by 1 pump stroke

7) Colour change : Yellowish green→Pink

2. RELATIVE STANDARD DEVIATION

RSD-low: 15% RSD-mid.: 10% RSD-high: 10%

3. CHEMICAL REACTION

PH indicator is discoloured by Hydrogen chloride.

4. CALIBRATION OF THE TUBE

COLOURIMETRY METHOD

5. INTERFERENCE AND CROSS SENSITIVITY

Substance	ppm	Interference	Coexistence
Sulphur dioxide	200	Similar pale stain is produced but can be distinguished from clear discoloration by Hydrogen chloride.	The accuracy of readings is not affected.
Nitric acid	High conc.	"	"
Nitrogen dioxide	100	"	"
Chlorine	1	Similar stain is produced.	Higher readings are given.

(NOTE)

In case of 1/2 and 5 pump strokes, the following formula is available for the actual concentration.

1/2 pump strokes; Actual concentration = Reading value \times 2 5 pump strokes; Actual concentration = Reading value $\times \frac{1}{5}$