ISOPROPYL ALCOHOL

1. PERFORMANCE

1) Measuring range Summer of pump strokes Sampling time Solution $50-1,200 \text{ ppm} 20-480 \text{ ppm} 1 (100 \text{m} \ell) 2 (200 \text{m} \ell)$ 2) Sampling time Solution 1.5 minutes/1 pump stroke

3) Detectable limit : $5 \text{ ppm} (200 \text{m} \ell)$ 4) Shelf life : 2 years5) Operating temperature : $10 \sim 40 \, ^{\circ}\text{C}$

6) Reading : Direct reading from the scale calibrated by 1 pump stroke.

7) Colour change : Yellow→Pale blue

2. RELATIVE STANDARD DEVIATION

RSD-low: 10% RSD-mid.: 10% RSD-high: 10%

3. CHEMICAL REACTION

Chromium oxide is reduced. $CH_3CH(OH)CH_3 + Cr^{6+} + H_2SO_4 \rightarrow Cr^{3+}$

4. CALIBRATION OF THE TUBE

GAS CHROMATOGRAPHY

5. INTERFERENCE AND CROSS SENSITIVITY

Substance	Interference	Coexistence
Alcohols FIG.1	Similar stain is produced.	Higher readings are given.
Ethers	"	"
Aliphatic hydrocarbons (more than C ₃)	Whole reagent is discoloured to Pale brown.	"
Aromatic hydrocarbons	"	"
Esters	"	"
Ketones	"	"
Halogenated hydrocarbons FIG.2	"	"

(NOTE)

In case of 2 pump strokes, following formula is available for the actual concentration. Actual concentration = $2/5 \times \text{Reading value}$

