MONOETHANOL AMINE

1. PERFORMANCE

1) Measuring range Number of pump strokes 1 $(100m\ell)$ 2 $(200m\ell)$ 2) Sampling time 1 $(100m\ell)$ 2 $(200m\ell)$ 3) Detectable limit 2 $(200m\ell)$ 4) Shelf life 2 years

5) Operating temperature 6) Temperature compensation 7) Reading : $0 \sim 40 \,^{\circ}$: Necessary (See "TEMPERATURE CORRECTION TABLE") 2: Direct reading from the scale calibrated by 1 pump stroke

8) Colour change : Pink→Pale purple

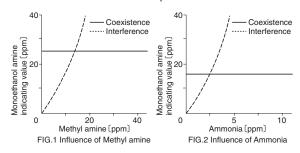
2. RELATIVE STANDARD DEVIATION

RSD-low: 10% RSD-mid.: 5% RSD-high: 5%

3. CHEMICAL REACTION

By reacting with Sulphuric acid, PH indicator is discoloured. H2NCH2CH2OH + H2SO4→ (HOC2N5NH3)2SO4

4. CALIBRATION OF THE TUBE


ABSORPTIOMETRIC METHOD

5. INTERFERENCE AND CROSS SENSITIVITY

Substance		Interference	Coexistence					
Other amines	FIG.1	Brownish yellow stain is produced.	Double-stain layer(Brownish yellow and Pale purple) is produced, but the maximum end point of the Pale purple stain is discernable.					
Ammonia	FIG.2	Similar stain is produced.	Double-stain layer(Yellow and Pale purple) is produced, but the maximum end point of the Pale purple stain is discernable.					
Hydrazine		"	"					
Atmospheric air (CO ₂ +H ₂ O)		"						

(NOTE)

In case of 2 pump strokes, following formula is available for the actual concentration. Actual concentration = $1/2 \times$ Temperature corrected value

TEMPERATURE CORRECTION TABLE

Tube	Corrected Concentration (ppm)					
Readings (ppm)	0 °C (32 °F)	10 °C (50 °F)	20 °C (68 °F)	30 °C (86 °F)	40 °C (104 °F)	
50	_	_	50	35	29	
40	_	65	40	30	25	
30	_	49	30	23	20	
25	_	39	25	20	17	
20	65	30	20	16	14	
15	45	22	15	12	10	
10	29	14	10	8	7	
5	12	7	5	4	3	
3	6	4	3	3	2	
1	1	- 1	- 1	1	1	